Maximal subgroups of GLn(D)

نویسندگان

  • S. Akbari
  • R. Ebrahimian
  • H. Momenaee Kermani
  • A. Salehi Golsefidy
  • Jan Saxl
چکیده

In this paper we study the structure of locally solvable, solvable, locally nilpotent, and nilpotent maximal subgroups of skew linear groups. In [S. Akbari et al., J. Algebra 217 (1999) 422–433] it has been conjectured that if D is a division ring and M a nilpotent maximal subgroup of D∗, then D is commutative. In connection with this conjecture we show that if F [M]\F contains an algebraic element over F , then M is an abelian group. Also we show that C∗ ∪ C∗j is a solvable maximal subgroup of real quaternions and so give a counterexample to Conjecture 3 of [S. Akbari et al., J. Algebra 217 (1999) 422–433], which states that if D is a division ring and M a solvable maximal subgroup of D∗, then D is commutative. Also we completely determine the structure of division rings with a non-abelian algebraic locally solvable maximal subgroup, which gives a full solution to both cases given in Theorem 8 of [S. Akbari et al., J. Algebra 217 (1999) 422–433]. Ultimately, we extend our results to the general skew linear groups.  2002 Elsevier Science (USA). All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 9: Applications of Local Fields

We will give some of this structure theory here: namely, we will classify the maximal compact subgroups of GLn(K) for K a nondiscrete locally compact field. This has immediate applications to the structure of finite subgroups of GLn(Q), which are of intrinsic interest and are quite useful in areas like representation theory and modular and automorphic forms. Moreover, this material (actually, a...

متن کامل

Finite arithmetic subgroups of GLn

We discuss the following conjecture of Kitaoka: if a finite subgroup G of GLn(OK) is invariant under the action of Gal(K/Q) then it is contained in GLn(K ). Here OK is the ring of integers in a finite, Galois extension K of Q and K ab is the maximal, abelian subextension of K. Our main result reduces this conjecture to a special case of elementary abelian p−groups G. Also, we construct some new...

متن کامل

On the type of conjugacy classes and the set of indices of maximal subgroups

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

متن کامل

On normalizers of maximal subfields of division algebras

‎Here‎, ‎we investigate a conjecture posed by Amiri and Ariannejad claiming‎ ‎that if every maximal subfield of a division ring $D$ has trivial normalizer‎, ‎then $D$ is commutative‎. ‎Using Amitsur classification of‎ ‎finite subgroups of division rings‎, ‎it is essentially shown that if‎ ‎$D$ is finite dimensional over its center then it contains a maximal‎ ‎subfield with non-trivial normalize...

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003